Refine Your Search

Topic

Search Results

Technical Paper

Initial Study of Railplugs as an Aid for Cold Starting of Diesels

1994-02-01
940108
The results of continuing investigations of a new type of ignitor, the railplug, are reported. Previous studies have shown that railplugs can produce a high velocity jet of plasma. Additionally, railplugs have the potential of assuring ignition under adverse conditions, such as cold start of an IDI diesel engine, because the railplug plasma can force ignition in the combustion chamber rather than relying on autoignition under cold start conditions. In this paper, engine data are presented to demonstrate the improved cold starting capability obtainable with railplugs. Data acquired using a railplug are compared to results obtained using no assist and using glow plugs. The engine used for this investigation will not start without glow plugs (or some starting aid) at temperatures below O°C, and the manufacturer's specification of the cold start limit for this engine using glow plugs is -24°C. Railplugs are able to initiate combustion at -29°C in one to two seconds with no preheating.
Technical Paper

Effects of Railplugs on the Dilution Tolerance of a Spark Ignition Engine

1993-08-01
931800
The results of continuing investigations of a new type of ignitor, the railplugs are reported. Previous studies have shown that railplugs can produce a high velocity jet of plasma. Additionally, railplugs have the potential of assuring ignition under adverse conditions, such as for very dilute mixtures, because the railplug plasma is both hotter and has a larger mass than the plasma generated by a spark plug. In this paper, engine data are presented to demonstrate the improved dilution tolerance obtainable with railplugs. Data acquired using a railplug are compared to results obtained using a conventional spark plug and a spark plug with a wide spark gap, both using an inductive ignition system. The present results affirm earlier, preliminary findings that railplugs can extend the dilution limit and produce faster combustion.
Technical Paper

Further Analysis of Railplugs as a New Type of Ignitor

1992-10-01
922167
The results of continuing investigations of a new type of ignitor, the railplug, are reported. Previous studies have shown that railplugs can produce a high velocity jet that is driven both by electromagnetic and thermal forces and that the jet velocity is strongly affected by the railplug geometry and by the electronics characteristics of the follow-on circuit. The present research was intended to provide insights about both: 1) how to match the electronics characteristics to a given geometry and 2) how the geometry affects the jet velocity. It is found that faster current rise times result in higher plasma velocities but current pulses that are too short result in rapid deceleration of the plasma while it is still within the railplug. It is also found that a fundamental geometric parameter is the ratio of the inductance gradient to the volume trapped within the railplug: the larger L′/V, the faster the resulting combustion process.
Technical Paper

Fractal Analysis of Turbulent Premixed Flame Images from SI Engines

1992-10-01
922242
Researchers in the field of turbulent combustion have found fractal geometry to be a useful tool for describing and quantifying the nature of turbulent flames. This paper describes and compares several techniques for the fractal analysis of two dimensional (2-D) turbulent flame images. Four methods of fractal analysis were evaluated: the Area Method, the Box Method, the Caliper Method, and the Area-Caliper Method. These techniques were first applied to a computer-generated fractal image having a known fractal dimension and known cut-offs. It was found that a “window” effect can cause the outer cut-off to be underestimated. The Caliper Method was found to suffer from noise arising from the statistical nature of the analysis. The Area-Caliper Method was found to be superior to the other methods. The techniques were applied to two types of flame images obtained in a spark ignition engine: Mie scattering from particles seeded in the flow and laser induced fluorescence of OH.
Technical Paper

A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data

1991-02-01
910079
A quasidimensional engine simulation which uses the concepts of fractal geometry to model the effects of turbulence on flame propagation in a homogeneous charge SI engine has been developed. Heat transfer and blowby/crevice flow submodels are included in this code and the submodels chosen are found to be reasonable. The model predictions of cylinder pressure histories are then compared with experimental data over a range of loads, equivalence ratios, and engine speeds. The model is not adjusted in any manner to yield better agreement with the data, other than by tuning the simple turbulence model used so as to yield agreement with data for the nonreacting flow. However, current information about the flame wrinkling scales in an engine is inadequate. Therefore, predictions are made for three different assumptions about the flame wrinkling scales which span the range of physically possible scales.
Technical Paper

Intake and ECM Submodel Improvements for Dynamic SI Engine Models: Examination of Tip-In/Tip-Out

1991-02-01
910074
Improved submodels for use in a dynamic engine/vehicle model have been developed and the resulting code has been used to analyze the tip-in, tip-out behavior of a computer-controlled port fuel injected SI engine. This code consists of four submodels. The intake simulation submodel is similar to prior intake models, but some refinements have been made to the fuel flow model to more properly simulate a timed port injection system, and it is believed that these refinements may be of general interest. A general purpose engine simulation code has been used as a subroutine for the cycle simulation submodel. A conventional vehicle simulation submodel is also included in the model formulation. Perhaps most importantly, a submodel has been developed that explicitly simulates the response of the on-board computer (ECM) control system.
Technical Paper

The Design and Fabrication of “Texas Native Sun”, The University of Texas Entry in G.M. Sunrayce U.S.A., a Solar Powered Vehicle Race Across the United States

1990-08-01
901515
A team of student engineers at the University of Texas at Austin has designed and built “Texas Native Sun”, a solar powered vehicle for competition in GM Sunrayce U.S.A. The single-seat vehicle uses conventional photovoltaic solar cells to produce electricity for vehicle propulsion. The vehicle features graphite/epoxy composite monocoque construction, a high power-density permanent magnet electric motor, a mechanical/hydraulic continuously variable transmission, nickel-hydrogen satellite batteries, and a composite leaf spring suspension. The race strategies and tactics of energy management are optimized through use of a computer code which simulates the vehicle under race conditions. Much of the technology employed in the vehicle may one day become an ordinary part of future transportation systems which seek greater energy efficiency and less damage to the environment.
X